

Visual Representations of Data: Review and Recommendations

Alison Preston, Laura Stapleton, & Dan McNeish University of Maryland, College Park

Outline

- Single graphic design
 - Views from stakeholders
 - Types of graphs
 - ▶ Table or graph?
 - Using attributes
- Dashboard design
- Recommendations for the Center
- References

Single Graphic Design

Views from Stakeholders

Views from Stakeholders

- Alverson & Yamamoto (2013)
 - "What do stakeholders want to see?"
 - Teacher, administrator, and parent focus groups (29 participants)
 - Four stimulus graphs

Figure 1. Horizontal Grouped Bars

Figure 3. Vertical Stacked Columns

Figure 2. Horizontal Stacked Bars

5

Figure 4. Vertical Grouped Columns

Favorite- Teachers, Administrators, and Parents

Graph 3 Percent of Our High School Youth by Type of Disability Working, In School or Training Program, or Both (working & in school/training) 34% 60% 40% 13% 20% All Young Adults from Specific Learning Emotional Disability Mental Disability Disability Type of Disability ■Working Only In School Only ☐ Both working & in school

Figure 1. Horizontal Grouped Bars

Figure 3. Vertical Stacked Columns

6

Figure 2. Horizontal Stacked Bars

Figure 4. Vertical Grouped Columns

Why Vertical Grouped Columns?

- ▶ Each group supported their decision with similar reasons
- ▶ Teachers:
 - Ease of comparisons
 - Comfort and familiarity
- Administrators
 - Ease, comfort, familiarity
 - Speed- quick to interpret
 - Habit
- Parents
 - ▶ Ease, comfort, familiarity
 - Speed- wouldn't bother if it couldn't be understood quickly

Figure 4. Vertical Grouped Columns

Least Favorites- Teachers, Administrators, and Parents

Figure 1. Horizontal Grouped Bars

In School Only

☐ Both working & in school

MLDS CENTER

Figure 3. Vertical Stacked Columns

8

Figure 2. Horizontal Stacked Bars

Figure 4. Vertical Grouped Columns

Why Dislike Stacked Graphs?

▶ Teachers:

- Difficult to understand/make comparisons
- What is the point? Total or segments?

Administrators:

- Only prefer stacked if the alternative is multiple grouped graphs over many pages
- Lack of comfort/familiarity
- ▶ Too much time to interpret

Parents:

- Lack of comfort/familiarity
- ▶ Too much time to interpret
- Difficult to understand

Figure 2. Horizontal Stacked Bars

Figure 3. Vertical Stacked Columns

Views from Stakeholders

- Key point: The design of individual graphics contributes to the understanding/perception of the information by the consumer
- Keep in mind:
 - Accurate and efficient display of content
 - Ease of interpretation
 - Familiarity

Single Graphic Design

Types of Graphs

Types of graphs

- Bar graph
- Grouped bars
- Stacked bars
- Histogram
- Scatterplot
- Line graph
- Pie Chart

This list is not all inclusive, but contains the common formats most comfortable for many consumers

Bar graph

- Categorical data
- Horizontal or vertical
- Relatively easy to compare different groups

Grouped bar graph

- Categorical data with main categories and sub-categories
- Can aid in comparisons within categories
- ▶ Comparisons across categories can be more difficult

Stacked bar graph

- Categorical data with main categories that contain stacked sub-groups
- Stacks show relative contribution with percentages or counts
- Can be difficult to compare sub-groups

Histogram

- Continuous data
- Frequency or proportion of observations in "bins"
- Provides information about shape of data

Scatterplot

- Displays relationship between two continuous variables
- May have points that share x- or y-values
- Trend line can be added to help visualize relationship
- Displays all observations (advantage or disadvantage?)

Line graph

- Points plotted to show a relationship between the variables and connected with line segments
- Only one y-value per x-value
- Often demonstrates trend over time

Pie chart

- Used to display proportion/percentages when all elements together add to 1 (100%)
- Clear perception of the whole picture (these are all the options and their relative proportion)
- Difficult to compare sections or across charts

Summary-Types of graphs

- Again, there are many more types, but these were some of the basic and most common types
- Consider type and purpose of data as well as ease and familiarity for interpretation when selecting a graph

Single Graphic Design

Table or Graph?

- Use a table when...
 - Display will be used to look up individual values
 - Comparison of individual values
 - Precise values are required
 - Multiple units of measure
 - Detail and summary values included

- Use a graph when...
 - Message contained in the shape of the values (patterns, trends, exceptions...)
 - Display will be used to reveal relationships among whole sets of values

- The traditional assumption is to use tables for small data sets and graphs for large ones
- More modern view is that patterns may be better seen with graphs.

Research question: What are the trends in physical fitness scores of middle school students by grade, gender, and sport team membership?

Student Performance on Physical Fitness Tests By Gender, Grade, and Team Membership					
	Grade 7		Grade 8		
Gender	Male	Female	Male	Female	
No Team	79	64	60	72	
Team	92	74	86	66	

Patterns can be tricky to spot even with a small set of numbers.

Which graphic best displays an inconsistent pattern?

Student Performance on Physical Fitness Tests By Gender, Grade, and Team Membership				
	Grade 7		Grade 8	
Gender	Male	Female	Male	Female
No Team	79	64	60	72
Team	92	74	86	66

Which visual best displays an inconsistent pattern?

	Student Performance on Physical Fitness Tests By Gender, Grade, and Team Membership				
		Grade 7		Grade 8	
	Gender	Male	Female	Male	Female
Here I can quickly spot the one line			64	60	72
with a negative slope. It is the best			74	86	66
graphic for finding this trend.					

Physical Fitness Score 100 90 80 70 Grade 7, Male —Grade 7, Female —Grade 8, Male —Grade 8, Female No Team Team Team Membership

Which visual best displays an inconsistent pattern?

Student Performance on Physical Fitness Tests By Gender, Grade. and Team					
Membership			Here I need	d to locate and	
	Grade 7 Gra			compare pairs of numbers	
Gender	Male	Female	Male	to find the	same trend
No Team	79	64	60	72	
Team	92	74	86	66	

find the same trend

Single Graphic Design

Using Attributes

Using Attributes

 Various attributes of a graph or table can be manipulated to aid interpretation or highlight certain details, trends, or patterns

Category	Attribute	
Form	Length	
	Width	
	Orientation	
	Shape	
	Size	
	Enclosure	
Color	Hue	
	Intensity	
Spatial Position	2-D position	
	Scale	

Form

Width

Orientation

Shape

Size

▶ Enclosure

Color

Hue

Intensity

In these examples, one object stands out because of an aspect of its color.

Spatial Position

▶ 2-D position

In this example, one object stands out because of its position.

What about 3D?

- Which is more popular- taco or hamburger?
- Approximately what percent selected chicken nuggets?

What about 3D?

- Which is more popular- taco or hamburger?
- Approximately what percent selected chicken nuggets?

Answers...

- Which is more popular- taco or hamburger?
- Approximately what percent selected chicken nuggets?

What about 3D?

- It may look cool, but is not as effective for communication of data relationships.
- Humans are unable to interpret depth as well as length and width on a flat surface.
- ▶ This typically leads to a skewed perception of the data.
- ▶ 3D graphics are not recommended in any graph type intended for consumer/stakeholder interpretation.

The Importance of Scale

▶ This graph was seen recently in a Washington Post article:

Tuition rising at U-Va.

In-state tuition and fees for freshmen at the University of Virginia will total \$14,468 next school year, **up 11 percent** from the current rate of \$12,998. Much of the added revenue will help fund grants for students in need. A similar tuition increase is planned for fall 2016.

Sources: U-Va. Office of University Communications and The College Board

The Importance of Scale

Let's look again...

The impact of these graphs may be different- the one on the right seems much more dramatic.

- Is there a "Golden Rule"?
 - Not really. Several statisticians have agreed that it is a complex issue but decisions need to be made by the graph designer.
 - However, there are some guidelines

Consistency of axes

 Appropriate to scale of data (large enough to show detail, small enough not to exaggerate variations)

Not always necessary to include zero

- Attempt consistency with multiple panels to aid comparisons
 - It is easier to compare the panels on the right because the scales are the same.

Dashboard Design

What is a Dashboard?

"A dashboard is a visual display of the most important information needed to achieve one or more objectives, consolidated and arranged on a single screen so the information can be monitored at a glance."

-Stephan Few, 2013

Beginning Steps

- Begin by defining the purpose of the dashboard
- Identify necessary information and context
- Identify individual graphics necessary to convey only needed information
- Assemble individual graphics and contextual information into a balanced dashboard

Dashboard Design Balancing Act

- Simplicity vs. Achieving Objective
 - Single Screen
 - Scrolling can make it difficult to compare or cause some information to be overlooked
 - Adequate Context
 - Should be clear what the viewer is looking at, but no extra information
 - Only enough detail to achieve objective
 - Graphics can have detail that relates to the objective, but avoid unnecessary distractors
- The following dashboard has some design issues. Can you find them?

Quality Yield Analysis

The Dashboard Design Balancing Act

- Visual Appeal vs. Meaningless Variety and Poor Design
 - Varying graph types for the sake of variety can make interpretation more difficult
 - All elements should be concise and organized
 - Color should be simple and not overwhelming
 - Semi-saturated colors work best- bright colors can be overwhelming

- Avoid backgrounds/unnecessary gridlines
- The following dashboards have some design issues. Can you find them?

Daily Sales Analysis

Distracting background and competing graphics

These dials show "Daily Short Value" and "Daily Coupons Applied"- not a logical format for this information

No descriptors for the stacked bars

They aren't all bad...

The following dashboard is an example of an effective combination of tables and graphs to convey information.

Personal Finance

There is a lot of information here, but the colors are simple, no distractors or extra details, and comparisons are easy within and between graphics.

Current Position

Summary: Dashboard Design

- Simplicity vs. Achieving Objective
- Visual Appeal vs. Meaningless Variety and Poor Design
- As with individual graphics, each product will be unique to the data and the context...
- ...and always look from the consumer's perspective.

Recommendations for the MLDS Center

Recommendations

- Remember the requests of the stakeholders
 - Ease and familiarity
- Match the type of graphic to the purpose of the data
 - ▶ Table or graph?
 - Type of graph?
- Use attributes, such as form and scale, to highlight details, trends, or patterns that explain the objective
- When creating dashboards, remember to balance objective with content
 - Consider splitting expansive ideas into multiple screens
 - Simplicity

Goal:

Effectively communicate with data!

References

- Alverson, C.Y., & Yamamoto, S. H. (2013). Talking with teachers, administrators, and parents: Preferences for visual displays of education data. *Journal of Education and Training Studies*, 2(2), 114-125.
- Anderson, N. (2015, March 26). At U-Va, a price hike for some will fund a price cut for others. The Washington Post. Retrieved from http://www.washingtonpost.com/local/education/at-u-va-a-price-hike-for-some-will-fund-a-price-cut-for-others/2015/03/26/6e17d26a-d31f-11e4-ab77-9646eea6a4c7_story.html
- Few, S. C. (2012). Show me the numbers: Designing tables and graphs to enlighten. Burlingame, CA: Analytics Press.
- Few, S. C. (2013). Information dashboard design: Displaying data for at-a-glance monitoring. Burlingame, CA: Analytics Press.
- Tufte, E. R. (2001). The visual display of quantitative information (2nd ed.). Cheshire, CT: Graphics Press.
- Wainer, H. (2005), Graphic discovery: A trout in the milk and other visual adventures. Princeton, NJ: Princeton University Press.